STOICHIOMETRY PRACTICE 1. How many moles are in each of the substances listed below? | a. 2.41 × 10 ²⁴ molecules of NaCl | |--| | 2.41×10 ²⁴ molecules molecules | | b. 9.03×10^{24} atoms of Hg | | 9.03×10 ²⁴ atoms x — moles atoms | | 2. How many atoms or molecules are in each of the substances below: | | a. 3.6 moles NO ₂ | | 3.6 moles x molecules | | b. 1.4 moles Br | | 1.4 moles x atoms moles | | Calculate the Molar Mass and the mass in grams of a <u>0.25 mol</u> sample of each of the following compounds: Sucrose (C₁₂H₂₂O₁₁) Molar Mass | | Mass of 0.25 mol in Grams: | | 0.25 mal x - 31 | | b. Potassium permanganate (KMnO ₄) Molar Mass | | Mass of 0.25 mol in Grams: | | .0.25 mol x - mol | | c. Ammonium hydroxide (NH4OH) Molar Mass | | Mass of 0.25 mol in Grams: | | 0.25 mol X—mol | | 4. How many moles are in each of the following? a. 15.5 g SiO ₂ 16.69 X | | b. 79.3g Cl ₂ 79.3 gx 9 | | c. 0.8 g Ca mol | | 5. How many moles of CO are in a sample that weighs 79 grams? | | 799 X | | a. How many molecules of CO would that sample have? | | molxmolecules | mol | 6. If I had 350g of silver, how many moles of silver make up that sample? | | |---|------| | 350 g x moles | | | 7. How many molecules of salt (NaCl) are in a single serving sample (one serving is 0.4g)? | | | 0.49 Nacl x mol x molecules | | | 8. How many molecules of aspirin are you consuming if you take one recommended dose? (The formula for aspirin is C ₉ H ₈ O ₄ and one adult dose is 0.325g)? | | | 0.325g X mol x molecules mol | | | 9. Ammonia is produced by the reaction of hydrogen and nitrogen: | | | a. Balance the equation: $N_2 + 3 H_2 \rightarrow 2 NH_3$ | | | b. Calculate the molar mass of N_2 H_2 NH_3 | | | c. How many moles of H_2 are needed to react with 2.0 moles of N_2 ? 2 moles $N_2 \times 10^{-10}$ moles of $N_2 \times 10^{-10}$ | المد | | d. How many moles of NH ₃ are produced when 8.4 moles of H ₂ react? $8.4 \text{ mol } H_2 \times \frac{\text{mol } NH_3}{\text{mol } H_2}$ | | | e. If I start with 6.2 grams of hydrogen gas (H ₂), how many grams of ammonia (NH ₃) can I produce? | | | 6.29 H2X molH2 X molNH3 X gNH3 molNH3 | | | 10. In an acetylene torch, acetylene gas (C_2H_2) burns in oxygen to produce carbon dioxide and water:
a. Balance the equation: $2 C_2H_2 + 5 O_2 \rightarrow CO_2 + 2 H_2O$ | | | b. Calculate the molar mass of C_2H_2 O_2 CO_2 H_2O | | | c. How many moles of O_2 are needed to react with 7 moles of C_2H_2 ? $O_2 = 0.02$ $O_2 = 0.02$ $O_2 = 0.02$ $O_2 = 0.02$ | | | d. How many grams of CO ₂ are produced when 3.5 moles of C ₂ H ₂ react? | | | 3.5 mol CzHzX - molCoz x - gCoz molCoz x molCoz | | | e. If I start with 100 g. of Oxygen gas (O ₂), how many grams of H ₂ O will be produced? | | | 100g O2 X mol O2 X mol H20 X gH20 gOz x mol O2 X mol H20 | | | Percent Composition | | | 11. Calculate the percent composition of each element in NaOH: %Na %O %H 12. Calculate the percent composition of FeO when 14 g of Iron combine completely with 4 g of Oxygen. | | | 12. Calculate the percent composition of FeO when 14 g of Iron combine completely with 4 g of Oxygen. | | | %Fe_ %0_ mass of each x 100 | | | For more practice, do problems 1-7 on pp 76-77 in your book or try <u>www.ck12.org/section/stoichiometry</u> | |