Nuclear Decay and Half Life Practice

Part A: Nuclear Decay

The following atoms all undergo alpha particle emission. Write the complete nuclear equation.

The following atoms all undergo beta decay. Write the complete nuclear equation.

$${}^{14}_{6}C \rightarrow {}^{-1}e + {}^{14}N$$

$$\frac{90}{38}$$
Sr $\rightarrow \frac{0}{10}$ + $\frac{90}{39}$ Y

The following all undergo positron emission. Write the complete nuclear equation.

$$\frac{61}{29}\text{Cu} \rightarrow \frac{28 \text{ Ni}}{29} + \frac{28 \text{ Ni}}{29}$$

$$\frac{30}{16}$$
S $\rightarrow \frac{0}{15}$ P + $\frac{30}{15}$ P

Complete the missing information in the reactions. Then, label the reaction one of the following:

Alpha Decay Beta Decay Positron Emission

$$\frac{14}{6}C \rightarrow \frac{14}{7}N + \frac{0}{-1}e$$

$$\frac{238}{92}U \rightarrow \frac{234}{90}Th + \frac{21}{2}He$$

$$^{15}_{8}O \rightarrow ^{15}_{7}N + \frac{\circ}{+1}e$$

$$\frac{32}{15}P \rightarrow \frac{32}{16}S + \frac{0}{-1}e$$

$$\frac{105}{47} \text{Ag} + \frac{2}{100} \rightarrow \frac{105}{46} \text{Pd}$$

Type: Beta Decay

Type: Alpha decay

Type: Positron emission

Type: Beta decay

Type: Beta decay

Type: Positron emission

Name K	ley	
		r

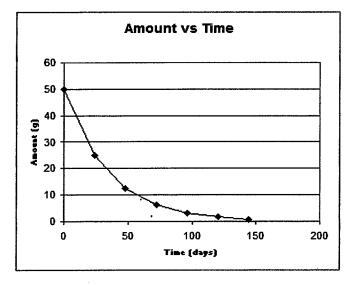
For the following, write the equations for the following reactions:

1. The alpha decay of radon-198 198 Rn -> 4 He + 194 Po

2. The positron emission from Mg-23 23 Mg -> fie + 23 Na

3. Decay of uranium-237 by beta emission 237. U → Pe + 237 NP

4. A sample of chlorine-32 slowly decays into sulfur. What type of emission can Positron emission explain this decay? 32 CI -> +1e+ 32 S


Part B: Solving half-life problems

5. Thallium-208 has a half-life of 3 minutes. How long will it take for 120g of thallium-208 (4 half-lives) 12 min. to decay to 7.5g?

6. The half-life of Gold-198 is 4 days. How much of a 96g sample of gold-198 would be (5 half-lives) left after 20 days? 3 9.

7. 150g of an isotope (with a half-life of 36 hours) is present. How much time would have elapsed when only 9.375g remain? 144 hours (4 half-lives)

8. The graph below depicts the radioactive decay of an isotope of chlorine. Using this information, answer the following:

a. What is the half-life of this isotope? 25 days

b. How much time would it take for this element to go through 4 half-lives?

100 days

c. How much of the original sample (in grams) would be left after 4 half-lives?

3.125 a. d. If a 40g sample was measured in **MMMP**, how much (in grams) of that chlorine would be present today?

N(t)= No (2)=1/2

Part C: Nuclear chemistry applications:

9. What is the difference between nuclear fusion and nuclear fission? fusion = joining 2 or more nuclei

fission: Splitting a nucleus
10. Why do some isotopes give off radiation?

their nucleus is unstable

N(t)= amount left No = initial amount t = time elapsed t1/2= half-life